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The 5-hydroxytryptamine (5-HT, serotonin) super-
family of receptors currently consists of 7 classes (5-
HT1-5-HT7) that embrace 14 human subclasses.1 The
most recent addition is the 5-HT6 receptor which was
first cloned from rat striatal mRNA in 1993 by two
independent groups.2 The human 5-HT6 receptor, cloned
in 1994 by Kohen et al.,3 is a 440-amino acid polypeptide
with seven transmembrane spanning domains typical
of G-protein-coupled receptors. Within the transmem-
brane region, the human 5-HT6 receptor shows 96%
identity to its rat homologue, but only 30-40% homol-
ogy to other human 5-HT receptors. The 5-HT6 receptor
is positively coupled to adenylyl cyclase.2

In the rat, the 5-HT6 receptor mRNA has its highest
abundance in the nucleus accumbens, striatum, cerebral
cortex, olfactory tubercle, and hippocampus.2,4 Although
the biological functions of the 5-HT6 receptor are poorly
understood, the distribution, together with its high
affinity for several therapeutically important antipsy-
chotic and antidepressant agents, suggests a possible
role for this receptor in the treatment of schizophrenia
and depression.2a,5 Most atypical antipsychotic drugs,
which lack extrapyrimidal side effects, bind with very
high affinity to the 5-HT6 receptor. In fact, the proto-
typic atypical antipsychotic agent, clozapine, exhibits
greater affinity for the 5-HT6 receptor than for any other
receptor subtype. Recent in vivo experiments demon-
strated that administration of antisense oligonucle-
otides, directed at 5-HT6 receptor mRNA, elicited a
behavioral syndrome in rats consisting of yawning,
stretching, and chewing which could be dose-depen-
dently blocked by the muscarinic antagonist atropine.6
This study implies that 5-HT6 receptors may modulate

cholinergic neurotransmission and hence 5-HT6 receptor
antagonists may be useful for the treatment of memory
dysfunction.

Unfortunately, further pharmacological evaluation of
the function of the 5-HT6 receptor has been hampered
by the lack of selective ligands. Recently, the first
selective 5-HT6 antagonists, Ro 04-6790 and Ro 63-0563,
were reported.7 These compounds were found to have
moderate affinity for the rat 5-HT6 receptor but were
poorly brain penetrant (<1%). However, when Ro 04-
6790 was administered intraperitoneally to rats, suf-
ficient brain levels were achieved to evoke a statistically
significant effect on stretching similar to that seen
following treatment with antisense oligonucleotides.

High-throughput screening of the SmithKline Bee-
cham Compound Bank against the cloned human 5-HT6
receptor in HeLa cell membranes, using [3H]lysergic
acid diethylamide as radioligand,2a identified the bisaryl
sulfonamide 1. This compound (4-bromo-N-[4-methoxy-
3-(4-methylpiperazin-1-yl)phenyl]benzenesulfona-
mide) showed excellent affinity for the 5-HT6 receptor
(pKi 8.3) and greater than 50-fold selectivity over a
number of other key receptors including 10 other 5-HT
receptor subtypes (Table 1). The sulfonamide 1 was
further tested in a commercial screening package (Cerep)
and has been found to have no appreciable affinity for
a total of over 50 receptors, enzymes, or ion channels
so far tested.

Compound 1 was evaluated in a functional model of
5-HT6 receptor activation in which 5-HT-stimulated
adenylyl cyclase activity was determined by measuring
the conversion of [R-33P]ATP to [33P]cAMP in HeLa cells
expressing the cloned human 5-HT6 receptor.9 In this
system, 5-HT elicited a dose-dependent 3-5-fold in-
crease over basal cAMP levels which was surmountably
antagonized by clozapine, methiothepin, amitriptyline,
and 1. In the presence of compound 1, the 5-HT
concentration-response curve had the same maximal
response but was shifted rightward in a parallel manner
(Figure 1) with an apparent pKb of 7.8 ( 0.2 (n ) 3),
which is in agreement with the binding affinity. In
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addition 1 showed no evidence of intrinsic activity in
this system as demonstrated by the lack of effect on
basal formation of cAMP with compound alone. Thus,
1 possesses the profile of a competitive antagonist.

The cytochrome P450 inhibitory potential of 1 was
determined using isoform-selective assays and heter-
ologously expressed human CYP1A2, CYP2C9, CYP2C19,
CYP2D6, and CYP3A4 (Table 2) in order to assess the
potential likelihood of drug interactions.8 Low to moder-
ate levels of inhibition were seen at several of the major
human P450 enzymes with the highest level of inhibi-
tion seen against CYP3A4 (IC50 6 µM). Pharmacokinetic
studies at steady state in rats (n ) 3, following 8 h iv
infusion) demonstrated that 1 was moderately brain
penetrant (25%) but was subject to rapid blood clearance
(∼60 mL/min/kg) resulting in low oral bioavailability

(Fpo ) 12%, iv/po crossover study). The structure of 1
was deemed to be readily amenable to exploration of
structure-activity relationships (SAR) by rapid parallel
synthesis, and it was therefore selected as the starting
point for a chemical program.

The SAR around the lead structure 1 was investi-
gated by coupling 4-methoxy-3-(4-methylpiperazin-1-yl)-
aniline10 (14) in a parallel manner with commercially
available sulfonyl chlorides containing a wide variety
of aromatic nuclei (Scheme 1).11 The binding results on
a representative selection of compounds (2-13) are
shown in Table 3. A range of affinities for the 5-HT6
receptor were obtained with a number of analogues
including monocyclic and bicyclic aromatics demonstrat-
ing improved binding profiles relative to 1. The unsub-
stituted phenyl 10 with a pKi of 8.0 at the 5-HT6
receptor provides a baseline activity for comparison.
Lipophilic substituents, in particular halogen, were
beneficial to 5-HT6 activity (e.g., 4, 5, 7-9), whereas
polar groups were detrimental, e.g., the 3-cyano (11) and
4-nitro (12) analogues. The polar imidazole 13 also
showed very poor 5-HT6 receptor affinity. The 5-chloro-
3-methylbenzothiophene 2 was optimal in this study
demonstrating sub-nanomolar 5-HT6 receptor affinity
and greater than 300-fold selectivity against a range of
other receptors (totalling 13 subtypes). In the functional
adenylyl cyclase assay, 2 was found to be a competitive
antagonist with an apparent pKb of 8.5 ( 0.2 (n ) 3)
(Figure 1). Several iodophenyl analogues (e.g., 4, 5, 8)
were also identified with excellent 5-HT6 receptor af-
finity and selectivity. The use of [125I]-8 as a specific
radioligand will be reported elsewhere.

Table 1. Receptor Binding Profile of Compounds 1, 2, and 15a

affinity (pKi)

1 2 15

5-HT1A 6.6 6.3 6.4
5-HT1B 6.4 6.1 6.1
5-HT1D 6.6 6.7 6.6
5-HT1E 5.8 5.6 <5.0
5-HT1F 6.5 6.6 <6.0
5-HT2A 5.9 6.0 <5.6
5-HT2B 6.2 6.0 <5.4
5-HT2C 6.0 6.3 5.7
5-HT4 5.6 5.5 5.4
5-HT6 8.3 ( 0.2 9.2 ( 0.1 8.9 ( 0.2

(n > 10) (n ) 3) (n ) 3)
5-HT7 5.6 5.5 5.4
adrenergic R1B 5.6 5.7 5.7
dopaminergic D2 5.4 6.1 5.6
dopaminergic D3 6.1 6.7 6.3

a All values represent the mean of at least two determinations,
with each determination lying within 0.2 log unit of the mean.
Receptors and radioligands used in binding assay: 5-HT1A (human
cloned receptors in HEK 293 cells, [3H]-8-OH-DPAT); 5-HT1B
(human cloned receptors in CHO cells, [3H]-5-HT); 5-HT1D (human
cloned receptors in CHO cells, [3H]-5-HT); 5-HT1E (human cloned
receptors in CHO cells, [3H]-5-HT); 5-HT1F (human cloned recep-
tors in CHO cells, [3H]-5-HT); 5-HT2A (human cloned receptors in
HEK 293 cells, [3H]ketanserin); 5-HT2B (human cloned receptors
in HEK 293 cells, [3H]-5-HT); 5-HT2C (human cloned receptors in
HEK 293 cells, [3H]mesulergine); 5-HT6 (human cloned receptors
in HeLa cells, [3H]LSD); 5-HT7 (human cloned receptors in HEK
293 cells, [3H]-5-CT); D2 (human cloned receptors in CHO cells,
[125I]iodosulpride); D3 (human cloned receptors in CHO cells,
[125I]iodosulpride).

Figure 1. Effect of compounds 1 and 2 on 5-HT-stimulated
adenylyl cyclase activity in membranes from HeLa cells
transfected with the human 5-HT6 receptor. Data points
represent the mean of duplicate determinations from a typical
experiment which was repeated at least twice.

Table 2. Human Cytochrome P450 Inhibitory Potential of 1
and 15

IC50 (µM)

compd 1A2 2C9 2C19 2D6 3A4

1 10 >100 46 11 6
15 66 >100 26 32 40

a The cytochrome P450 inhibitory potential was determined
using isoform-selective assays and heterologously expressed hu-
man CYP1A2, CYP2C9, CYP2C19, CYP2D6, and CYP3A4. IC50's
were determined at the substrate Km as has been previously
described12 [CYP1A2, caffeine N3-demethylation (500 µM); CYP2C9,
tobutamide methylhydroxylation (100 µM); CYP2C19, S-mepheny-
toin 4-hydroxylation (100 µM); CYP2D6, bufuralol 1′-hydroxylation
(10 µM); CYP3A4, total cyclosporin oxidation (1 µM)]. These values
are the mean of duplicate determinations which did not vary by
more than 10%.

Scheme 1. Synthesis of Bisaryl Sulfonamides 1-13a

a Reagents: (i) ArSO2Cl, acetone, rt, 18 h (65-92%).

R = Me     

R = H              15 (SB-271046)
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Pharmacokinetic studies at steady state in rats fol-
lowing a 16-h infusion (n ) 4) demonstrated that 2 was
moderately brain penetrant (18%) and, in contrast to
1, was subject to low blood clearance (12.5 mL/min/kg).
However, in rats 2 was metabolically N-dealkylated to
the corresponding NH-piperazine 15. As significant
levels of 15 were found in blood, it was synthesized and
its biological profile assessed. Thus, 5-chloro-N-(4-
methoxy-3-piperazin-1-ylphenyl)-3-methyl-2-benzothio-
phenesulfonamide (15) (SB-271046) was prepared via
the BOC-protected piperazine according to Scheme 2.
The receptor binding profile of 15 is shown in Table 1.
The 5-HT6 receptor affinity, although slightly reduced
relative to that of the N-methylpiperazine 2, remains
excellent (pKi 8.9), and furthermore 15 also has good
selectivity (>200-fold) against a total of over 50 recep-
tors, enzymes, or ion channels.

In the functional adenylyl cyclase assay, 15 was found
to be a competitive antagonist with a pA2 of 8.7 which

is in good agreement with its binding affinity (Figure
2). Linear regression analysis of Schild plot data re-
vealed a correlation coefficient of unity and a slope of
1.04. In addition to an excellent binding profile, com-
pound 15 demonstrated no significant inhibitory activity
at the major human P450 enzymes (Table 2). Pharma-
cokinetic studies demonstrated that 15 was moderately
brain penetrant (10%), subject to low blood clearance
(7.7 mL/min/kg) with a good half-life in rats (4.8 ( 0.1
h), and had excellent oral bioavailability (>80%).

In conclusion, a series of potent and selective N-
methylpiperazines has been developed from a high-
throughput screening lead 1. The benzothiophene 2
which was the most potent compound from this series
was metabolically demethylated in vivo. Consequently,
the NH-piperazine benzothiophene 15 was prepared and
found to be a high-affinity, selective, and orally bio-
available 5-HT6 receptor antagonist. Compound 15 is
currently being further evaluated for its therapeutic
potential.

Supporting Information Available: Experimental Sec-
tion containing the synthesis of compounds 2-5. This material
is available free of charge via the Internet at http://pubs.
acs.org.

Table 3. 5-HT6 Receptor Binding Affinity and Selectivitya of
Bisaryl Sulfonamides 2-13

compd Ar pKi 5-HT6

selectivity vs 13
receptor subtypes

2 9.2 >300

3 9.1 >250

4 9.1 >200

5 9.0 >125

6 8.9 >300

7 8.7 >100

8 8.6 >160

9 8.5 >300

10 8.0 80

11 7.2 -

12 7.1 -

13 6.1 -

a Selectivity was determined against the 13 receptor subtypes
detailed in Table 1.

Scheme 2. Synthesis of 5-Chloro-N-(4-methoxy-3-
piperazin-1-ylphenyl)-3-methyl-2-benzothiophenesul-
fonamide 15a

a Reagents: (i) (BOC)2O/K2CO3, THF/H2O, rt, 18 h (89%); (ii)
H2/10% Pd/C, EtOH, rt, 18 h (99%); (iii) 5-chloro-3-methylben-
zo[b]thiophene-2-sulfonyl chloride/pyridine, DCM, rt, 18 h (97%);
(iv) THF/cHCl (5:1), reflux, 2 h, recrystallization (EtOH/H2O)
(83%).

Figure 2. Effect of compound 15 (SB-271046) on 5-HT-
stimulated adenylyl cyclase activity in membranes from HeLa
cells transfected with the human 5-HT6 receptor. Data points
represent the mean of duplicate determinations from a typical
experiment which was repeated at least twice.
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